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Abstract—This paper proposes the use of Recurrent Neu-
ral Networks (RNNs) with Long Short-Term Memory (LSTM)
units for determining whether Mandarin-speaking individuals
are afflicted with a form of Dysarthria based on samples of
syllable pronunciations. Several LSTM network architectures are
evaluated on this binary classification task, using accuracy and
Receiver Operating Characteristic (ROC) curves as metrics. The
LSTM models are shown to significantly improve upon a baseline
fully connected network, reaching over 90% area under the ROC
curve on the task of classifying new speakers, when a sufficient
number of cepstrum coefficients are used. While the results may
still be short of a practical replacement for medical diagnosis, we
show that the LSTM’s ability to leverage temporal information
within its input makes for an effective step in the pursuit of
accessible Dysarthria diagnoses.

Index Terms—Dysarthria, RNN, LSTM, Machine Learning

I. INTRODUCTION

THERE are approximately 7 million individuals in China
suffering from various speech disabilities. One such dis-

order, Dysarthria, results in an increased difficulty to articulate
phonemes, due to neurological injuries that cause impaired or
uncoordinated movement of the muscles, including the lips,
tongue, lower jaw, velum, vocal folds, and diaphragm during
speech production. The impact of Dysarthria is exacerbated in
Mandarin-speaking individuals because Mandarin Chinese is
a tone language in which variations in tone at syllable level
carry lexical meaning.

With the aging population increase, the number of people
with Dysarthria will continue to grow. Given the challenges it
poses to effective communication, accessible means to diag-
nosis is paramount. Currently, there are two main categories
of Dysarthria assessment: subjective approaches and objective
approaches. The most common used assessments in recent
rehabilitation practice and speech rehabilitation institutions
are still those based on subjective auditory perception and/or
subjective scales, with poor objectivity and stability. Objective
assessment methods include oro-pharyngeal physical exami-
nation and electroglottography examination. These and other
types of examinations however have unsatisfactory compliance
of patients. Patients with Dysarthria may also turn to neurology
departments and speech rehabilitation institutions, however,
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the lack of interdisciplinary coordination results in incom-
plete and subjective examinations, causing low consistency
among hospitals and institutions. In China, this problem is
compounded by the insufficient number of professional speech
therapists. The current estimated number of speech therapists
in China is less than 10,000 [1] whereas the demand for such
professionals in a country of a population of 1.38 billion is
368,350, according to Enderby and Davies [2]. To release the
pressure caused by the increase in the number of patients
with speech disorders, and the paucity of professional speech
therapists, an objective and accurate method for identifying
individuals with dysarthria is deemed timely and necessary.

To this end, we present a collection of Long Short-Term
Memory (LSTM) network architectures capable of discerning
those who suffer from Dysarthria, given Mandarin syllable
pronunciations as input. Most established medical practices
regarding the diagnosis of Dysarthria, such as the Frenchay
Dysarthria Assessment (FDA) [3], require the patient be
physically present and undergo a series of examinations. In
contrast, the system presented here increases accessibility by
merely relying on speech as input. While it is doubtful that
such a system can completely replace diagnosis by a medical
practitioner, it has the potential to provide a more accessible,
less invasive, initial step in seeking care.

To evaluate the LSTM architectures, we first conducted a
baseline experiment to test whether they provide an advantage
over non-recurrent, fully connected networks. LSTMs were
then evaluated on several variants of the dataset to gain insight
into the most effective inputs for Dysarthria classification.

II. MODEL ARCHITECTURE

Given an audio clip X , containing the pronunciation of a
Mandarin syllable, the model is to produce a label Y , which
is positive if and only if the speaker suffers from Dysarthria.
Figure 1 illustrates a single training example’s path through
the proposed processing architecture.

The raw waveform X is first pre-processed into an MFCC
feature vector X ′ = {x1, ..., xt, ..., xT }, where the number
of MFCC frames T can be different from one raw input
X to another. The MFCC vectors xt were created using
a sliding window of 25 milliseconds with a 10 millisec-
ond stride. Each MFCC vector consists of N coefficients
xt = {θ1, ..., θn, ..., θN}, where N = 13 unless explicitly
stated. These were collected and normalized such that each
coefficient θn had zero mean and unit variance across all
training examples. Since the length of each input X ′ can be
different, to exploit parallelism, each mini-batch fed into the
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Fig. 1: From a waveform example X to its classification Y in
the proposed model architecture.

network is 0-padded such that each X ′ in the mini-batch has
the same length Tmax, where Tmax is the largest T value in
the mini-batch.

After pre-processing, an LSTM network is run over the
entire sequence X ′, feeding one MFCC vector at each time
step. The network produces an output ht at each time step,
but only the last output hT is used as input to the logistic
regression layer. Given that the examples were padded to have
the same length Tmax, we achieve this by keeping track of
the actual lengths of each X ′. The logistic regression takes
as input the LSTM output hT corresponding to the last frame
in each example and computes the probability of a Dysarthria
diagnosis Y .

We experimented with several variants of the LSTM model,
including adding layers and using a bidirectional LSTMs. For
the models with one layer, L2 regularization was used. The
two-layer model employed dropout [4] between the LSTM
layers, as well as between the last LSTM layer and logistic
regression. Dropout is not applied on recurrent connections, as
suggested in [5]. Bidirectional LSTM networks perform two
concurrent passes on the data, left to right and right to left. The
output vectors produced by the two passes are concatenated
and fed to the logistic regression layer.

III. EVALUATION METHODOLOGY

The evaluation data consists of samples of syllables
recorded from 69 Mandarin speaking adults, 38 male and 31
female. The number of individuals in each class is presented in
Table I, together with the corresponding number of recorded
syllables. The participants were from Jinan University School
of Medicine, who included 31 native Mandarin-speaking pa-
tients (19 males and 12 females) with post-stroke Dysarthria.

TABLE I: The distribution of positive (with Dysarthria) and
negative (no Dysarthria) individuals and syllables (shown
within brackets) in the dataset.

Ratio Female Male
Positive 46.6% 12 [1001] 19 [1792]
Negative 53.4% 19 [1600] 19 [1605]
Total 100% 31 [2601] 38 [3397]

The age of the dysarthric speakers ranged from 25 to 83
years old [mean ± SD: 56.74 ± 16.40 years]. All participants
went through physical examination, Frenchay Dysarthria As-
sessment, and other auxiliary examinations (such as brain CT,
MRI). Before the stroke occurred, all patients had no speech-
related impairments and were able to communicate fluently
in Mandarin. They had no alexia, visual, or severe auditory
comprehension impairments, and had pure-tone thresholds at
500, 1000, and 2000 Hz of ≤ 25 dB HL in at least one ear. The
control group included 38 healthy adults (HA) (19 males and
19 females) in a similar age range (21 to 76 years old; mean
± SD: 45.89 ± 13.02 years). Some of the family members of
the Dysarthria groups were recruited into the HA group. They
all had pure-tone thresholds at 500, 1000, and 2000 Hz of
≤ 25 dB HL in at least one ear with no reported hearing
or speech disorders. More details about the demographical
information of the participants and the acoustic properties of
the speech samples can be found in [6]. Informed consent was
obtained from all participants. All research was performed in
accordance with relevant guidelines and regulations.

Note that although the positive or negative labels are orig-
inally assigned only to speakers, the models are trained and
tested using syllables as input. To assign labels to syllables
during training, we propagate the speaker label to all the syl-
lables recorded from that speaker. This is bound to introduce
label noise in the positive labeled syllables, as not all syllables
from a speaker afflicted with Dysarthria exhibit abnormal
speech production. If a speaker is seen to correspond to a bag
of syllables, the problem corresponds to a multiple instance
learning (MIL) setting [7] [8]. In this paper, we use the simple
MIL approach of projecting bag labels to all syllable instances
in the bag, leaving the application of more sophisticated MIL
methods for future work.

The dataset was used for the training and evaluation of four
models, as follows:

1) Baseline: A fully connected feedforward neural network
with one hidden layer.

2) LSTM-1: Single layer, unidirectional LSTM.
3) LSTM-2: Double layer, unidirectional LSTM.
4) BiLSTM-1: Single layer, bidirectional LSTM.

Unlike the RNN models which can work with a variable
number of MFCC frames, the baseline model requires a fixed-
size input. This was achieved by padding all examples up to
the maximum length Tmax.

All models use a hidden layer size of 200. They are trained
using Adam [9] for 40 epochs on mini-batches of size 64.
The training objective is formulated as the syllable-level cross-
entropy loss between the predictions and the ground truth
provided by the medical practitioners who collected the data.
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While only the individuals were manually labeled as having
Dysarthria (positive) or not (negative), the label for each
individual was also assigned to all the syllables coming from
that individual, and the cross-entropy loss was formulated
using syllables as examples.

To prevent overfitting, a form of early stopping was em-
ployed, where training is stopped when the ratio of the current
validation error εcurr to the lowest error seen thus far εmin

exceeds a threshold 1 + α, i.e. εcurr/εmin > 1 + α, where
α = 0.075. A grace period is used, such that training is only
stopped if the threshold is met for 5 epochs in a row.

IV. EXPERIMENT I: KNOWN SPEAKERS

We first compared the LSTM models against the baseline
fully connected network on the relatively easier task of non-
novel speakers. Here, the entire set of syllables from the
dataset is shuffled and partitioned into the training, testing,
and validation sets using a number of syllables ratio of 2:1:1,
respectively. Since the dataset is partitioned at syllable-level,
it is possible for a patient to have their syllables partitioned
among the training, validation, and test sets. Thus, syllables
that appear at test time may come from patients that have been
observed at training time.

We employed the syllable-level accuracy, precision, and
recall as metrics to judge the performance of each model [10].
Accuracy is the percentage of correct syllable labels predicted
by the system. Precision and recall were also considered due to
the medical nature of our experiments. That is, most people do
not suffer from Dysarthria, but it is the instances in which one
does that are important to classify correctly. Precision is the
percentage of correct positive predictions (true positives) out
of all the positive predictions (true positives + false positives).
Recall is the percentage of correct positive predictions out of
all the positive examples (true positives + false negatives).
Because individuals who receive a negative prediction (i.e.,
who do not suffer from Dysarthria) are less likely to seek a
second opinion, we are especially interested in a higher recall.

The baseline fully connected model obtains 79.0% accuracy,
which is a significant improvement over the 53.4% of the
majority classifier. Table II also shows the results for each
LSTM model. LSTM-1 and LSTM-2 achieve similar perfor-
mance, outperforming the baseline and making a marginal
improvement upon the Bi-LSTM-1 model.

Figure 2 shows the error rate behavior of each model,
as a function of the number of training epochs. The LSTM
models clearly outperform the baseline; however, increasing
the capacity through an additional hidden layer or making the
model bidirectional did not result in significant performance
improvements. LSTM-1 and LSTM-2 achieved the same accu-
racy, with a slightly different trade-off between precision and
recall.

V. EXPERIMENT II: NOVEL SPEAKERS

While it is clear from the previous experiment that the
LSTM models outperform the baseline on the task of classi-
fying syllables from known speakers, we are more interested
in how they perform when evaluated on novel speakers.

TABLE II: The syllable-level performance of baseline and
LSTM models in experiment I (known speakers).

Accuracy Precision Recall F-measure
Baseline 79.0 79.5 82.9 81.2
LSTM-1 88.7 88.5 81.2 84.7
LSTM-2 88.7 88.0 81.7 84.7
Bi-LSTM-1 87.8 86.6 81.8 84.1

Fig. 2: Error rate behavior over the 40 epochs of training.

In the experiment from Section IV, the training set and
the test set may contain syllables from the same speaker.
To more accurately match the application to novel speakers,
in this experiment the training and test sets were created
by partitioning the set of speakers. As such, an individual’s
syllables appear either in the test or in the training set, but not
in both.

Because the number of speakers in the dataset is relatively
small, we opted to evaluate the models using a 10-fold cross
validation scenario. We randomly sampled 9 of the 69 speakers
to use as a validation set. The remaining 60 were then
partitioned into 10 groups of 6. A cross validation evaluation
consisted of 10 rounds, distinguished by which fold is used as
the test set. Thus, in each round, the models were trained on 54
speakers and tested on a set of 6 novel speakers. The trained
models are then evaluated in two scenarios: syllable-level and
speaker-level classification.

A. Syllable-Level Evaluation

In the syllable-level classification, the trained models are
evaluated by how good they are at classifying syllables from
the speakers in the test set. This is similar to the exper-
iment from Section IV, except that now the test syllables
are now coming from novel speakers. Figure 3 shows the
receiver-operating characteristic (ROC) and precision-recall
(PR) curves. To gain perspective on the ROC behavior, we
consider a model which produces a positive classification
with probability p. The majority classifier can be seen as the
extreme case, where p = 1. As p increases from 0 to 1, the
red line in Figure 3a is produced, with an area under the curve
(AUC) of 0.5. The three LSTM models clearly improve upon
this baseline for all three methods of inference, with LSTM-
1 edging out the other two models. In terms of AUC, the 3
systems obtain the following scores: 75.4 for LSTM-1, 69.5
for LSTM-2, and 71.4 for Bi-LSTM-1.
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(a)

(b)

Fig. 3: Receiver-operating characteristic (ROC) and precision-
recall (PR) curves for syllable-level classification.

B. Speaker-Level Evaluation

In the speaker-level classification, we take the logistic
regression outputs for all syllables belonging to a test speaker
and aggregate them into a single probability score that can be
used to classify the speaker. To achieve this, we investigated
two aggregation methods: soft-majority and a normalized
version of noisy-OR. Given a speaker with m syllables, let
σk be the the logistic regression output for the k-th syllable
of that speaker. Then the two aggregation methods compute
the speaker-level probability as follows:

soft-majority =
1

m

m∑
k=1

σk (1)

noisy-OR = 1− 1

m

m∑
k=1

log (1− σk) (2)

Because the traditional noisy-OR calculation would be affected
by the number of syllables each speaker has, we computed it
in log-space and normalized the probability of the negative

(a)

(b)

Fig. 4: Receiver-operating characteristic (ROC) and precision-
recall (PR) curves for speaker-level evaluation.

class by the number of that speaker’s syllables. This allowed
us to directly compare the noisy-OR scores between speakers
with a varying number of examples.

Figure 4 presents the receiver-operating characteristic
(ROC) and precision-recall (PR) curves for the soft-majority
method of inference. The noisy-OR method produced identical
results, therefore its curves are not shown. The LSTM-1 model
again obtains the best results. The first line in Table III shows
the performance of the three LSTM models in terms of the area
under the ROC curve (AUC). The speaker-level performance
is higher than at syllable level, likely because not all sylla-
bles from speakers afflicted with Dysarthria exhibit abnormal
speech production. Because an accurate diagnosis cannot be
expected to result from a single syllable, the speaker-level
method is therefore more appropriate for practical purposes.

TABLE III: AUC scores: speaker-level vs. syllable-level.

LSTM-1 LSTM-2 Bi-LSTM-1
Speaker-level 85.4 78.5 84.7
Syllable-level 75.4 65.9 71.4
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Fig. 5: Receiver-operating characteristic (ROC) and precision-
recall (PR) curves using all syllables vs. without syllables with
compound vowels (prefixed with ’cv-’) vs. without syllables
with consonant-/a/ (prefixed with ’c/a/-’).

C. Effects of Syllables Types on Classification Accuracy

There are three types of syllables in the dataset: (1) syllables
with monophthongs, (2) syllables with compound vowels,
and (3) syllables with consonant-/a/. In order to evaluate the
classification accuracy based on various types of syllables, we
created three combinations of the syllable dataset. The first
combination (no prefix) consists of all three types of syllables.
The second combination (prefixed with ’cv-’) does not contain
syllables with compound vowels. The third combination (pre-
fixed with ’c/a/-’) does not contain syllables with consonant-
/a/. In this experiment, we test how well the models perform
when they are trained on the three different combinations of
syllable types. Figure 5 shows the receiver-operating charac-
teristic (ROC) and precision-recall (PR) curves for the three
LSTM models and the three different combinations of syllable
types. The corresponding AUC scores are shown in Table IV.

TABLE IV: Speaker-level AUC scores over all syllables (All)
vs. without syllables with compound vowels (No ’cv’) vs.
without syllables with consonant-/a/ (No ’c/a/’).

All No ’cv’ No ’c/a/’
LSTM-1 85.4 92.3 62.1
LSTM-2 78.5 90.2 84.5
Bi-LSTM-1 84.7 92.0 85.9

The models performed significantly better according to
their AUC scores when syllables with compound vowels
were removed. All three models scored above 90% when
trained without this type of syllables. Therefore, it may be
a reasonable heuristic to not include syllables with compound
vowels when diagnosing a Dysarthria patient. This intuitively
follows from the observation that, even for healthy speakers,
these syllables are more difficult to produce and variability
of their acoustic properties is greater than syllables with
monophthongs.

D. Varying the Number of Cepstrum Coefficients

While including N = 13 cepstrum coefficients in each
feature has produced promising results, there may still be
room for improvement by adding more coefficients. To this
end, three 10-fold cross-validation evaluations were conducted
in the same manner as before, with N = 13, 19, and 25
coefficients used as input, respectively. When less than 25
cepstrum coefficients are used, they are taken starting from
the cepstrum with the lowest quefrency. Table V shows the
speaker-level AUC scores for the three LSTM models using
the soft-majority inference method.

TABLE V: Speaker-level AUC scores for different numbers
of cepstrum coefficients.

N = 13 N = 19 N = 25
LSTM-1 85.4 90.1 81.7
LSTM-2 78.5 88.2 87.1
Bi-LSTM-1 84.7 88.4 90.4

Adding more cepstrum coefficients leads to substantial
improvements in the performance of BiLSTM-1, matching
LSTM-1’s best performance. LSTM-1 and LSTM-2 have a
similar behavior in the sense that their maximum performance
is achieved for 19 coefficients. When all 25 coefficients are
used, their performance decreases, which could be due to a
lack of capacity.

VI. RELATED WORK

Carmichael et al. [11] employed multilayer perceptrons and
decision trees to classify the different forms of Dysarthria, us-
ing as input a computerised Frenchay Dysarthria Assessement
(CFDA) profile, essentially a vector of articulatory dysfunction
values measured using acoustic signal processing techniques.
Unlike our work, however, the system is trained and tested
on a distribution of English-speaking people already known
to have some form of Dysarthria. Prior to this, an effort
was made to classify speakers into one of the categories of
Dysarthria using a manual Frenchay Dysarthria Assessement
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of each patient as input [3][12]. The more advanced topic of
recognizing speech produced from someone with Dysarthria
using RNN networks has also been investigated recently for
English speaking individuals, using Elman recurrent neural
networks in [13] and a hybrid deep neural network – hidden
Markov model (DNN-HMM) architecture in [14]. Wu et al.
[15] presented a personalized model adaptation for automatic
speech recognition (ASR) targeted at Mandarin-speaking in-
dividuals afflicted with articulation disorders due to mild-to-
moderate hearing impairment.

VII. FUTURE WORK

ZCA whitening is employed as a pre-processing step in
many audio classification tasks [16][17][18], as such it is a
compelling next step in an effort to improve performance.

The type of training data available for speaker classifica-
tion falls under the multiple instance learning (MIL) setting.
Correspondingly, we plan to use LSTMs with models that are
specifically designed for the MIL setting.

The solutions discussed in this paper are monolithic, end-to-
end networks. Alternatively, one may use a recursive network
structure similar to the one employed in [11]. Different net-
works are trained independently, then combined to produce
one, larger classifier. For example, one network may classify
the speakers’ gender or rate of speech first, providing more
information to the next layer to use. This pattern would
culminate in a final Dysarthria classification layer. The model
presented in [19] takes features much closer to the raw
waveform when compared to MFCCs. Applying this approach
to Dysarthria classification may also prove to be effective.

VIII. CONCLUSION

This paper investigated the effectiveness of three LSTM
networks, two uni-directional and one bi-directional, for the
task of Dysarthria diagnosis based on recordings of sylla-
bles from both afflicted and healthy Mandarin speakers. In
the first experiment, all LSTM architectures outperformed a
fully connected baseline when evaluated using syllable-level
accuracy, with the bi-directional variant slightly trailing the
uni-directional variants. The second experiment assumes the
test syllables come from novel speakers, and evaluates the
three LSTM models at both syllable-level and speaker-level.
When the syllables with compound vowels are removed from
the dataset, all models obtain over 90% AUC. Furthermore, we
found that the LSTM models’ performance could be improved
by increasing the number of cepstrum coefficients. While these
methods may not be yet practical as a stand-alone medical test,
they do suggest that LSTM networks may provide a fruitful
avenue for the realization of autonomous Dysarthria diagnosis.
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